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화산가스 자료에 대한 통계분석

정훈영

부산대학교 지질환경과학과

요  약

본 연구는 화산의 분화 시기를 예측하기 위해 일련의 통계기법을 토대로 화산가스 자료를 해석하는 방법을 

소개한다. 사용된 통계기법은 ‘자료변형’, ‘인자선택’, ‘시계열분석’의 세 단계로 구분된다. 1단계에서 측정된 

자료는 선형 보간(linear interpolation)에 의해 등시계열(evenly spaced time series)로 변형되고, 이후 무차원 

계열(dimensionless series)로 바뀐다. 2단계에서 다수의 자료들은 요인분석(factor analysis)을 비롯해 상관분

석(correlation analysis)과 교차상관분석(cross correlation analysis)을 바탕으로 소수 자료로 축소해 추후 분석

에 사용된다. 3단계에서 선택된 자료는 Classical Decomposition with Moving Averages (CDMA) 및 주파수 

분석(spectra analyses)에 의해 우연성분(periodic component), 주기성분(periodic component), 추세성분(trend 
component)으로 분리할 수 있다. 마지막으로 추출된 추세성분을 사용해 화산분화 예측에 대해 토의했다. 분화 

징후를 지시하는 신호가 종종 비화산적 배경 신호와 혼재함을 고려할 때, 본 연구에서 제시된 통계분석은 화산

가스 자료를 해석하는 데 있어 체계적이고 유용한 방법을 제공할 수 있다.

주요어: 화산가스, 화산분화, 요인분석, 시계열분석
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ABSTRACT: In this study, a series of statistical approaches were discussed to interpret volcanic gas data for the 
better prediction of volcanic eruptions. These approaches included data modification, parameter selection, and 
time series analysis. In case of data modification, raw gas data were first transformed into evenly spaced time series 
by linear interpolation, and then standardized into dimensionless forms. During parameter selection, a large data 
set was reduced into a smaller one using factor analysis, with the aid of correlation and cross correlation analyses. 
In time series analysis, the selected data were disintegrated into three components (random, periodic, and trend 
components) using the Classical Decomposition with Moving Averages (CDMA) and/or spectra analyses. Finally, 
in-depth discussions were provided on how to interpret the extracted trend components to predict volcanic eruptions. 
These approaches may provide a systematic way to interpret volcanic gas data. The practice of the aforementioned 
analyses is of critical importance given that the precursory signals of eruptions tend to be mingled with 
non-volcanological backgrounds.
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1. INTRODUCTION

Volcanic eruptions often lead to the damage of 

human lives and properties, and they may also 

trigger climate changes (Robock, 2000). Accordingly, 

the prediction of volcanic eruptions in a timely man-

ner can reduce or prevent these adverse consequences. 

Several methods have been employed to aid the 

prediction of volcanic eruptions, which include 

electronic distance measurement (EDM) (Ramírez-Ruiz 

et al., 2002; Saepuloh et al., 2013), seismological 

monitoring (Ratdomopurbo and Poupinet, 2000; 
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Inza et al., 2014), electric and magnetic field meas-

urement (Sasai et al., 2002; Lillis et al., 2008), and 

volcanic gas monitoring (Inguaggiato et al., 2013). 

Of all these methods, volcanic gas monitoring is 

based on temporal changes in volcanic gas com-

positions caused by volcanic activities.

As a magma ascends near the ground surface, 

volatile components within it tend to be exsolved 

and discharged as gases (Proussevitch and Sahagian, 

2005). In general, volcanic gas emission gets stron-

ger as eruptions become imminent (Fischer et al., 

1996). Thus, highly elevated CO2, SO2, and H2S 

concentrations in volcanic gases are often con-

sidered to be indicative of volcanic eruptions 

(Bruno et al., 2001; Werner et al., 2013). Due to the 

varied solubility in magmas, each volcanic gas 

has a different propensity to be exsolved; for ex-

ample, less soluble components (e.g., CO2) emit 

readily from the early stage of eruptions, where-

as more soluble components (e.g., HCl and HF) do 

not emit strongly till the later stage (Lee et al., 2018). 

To this end, the concentration ratios of CO2/H2O, 

CO2/SO2, SO2/HCl, and SO2/HF have also been 

regarded as eruption precursors (Aiuppa, 2009; 

Allard, 2010; Notsu and Mori, 2010; López et al., 

2013; Werner et al., 2013).

Despite the aforementioned trends in volcanic gas 

compositions, the interactions of volcanic gases with 

hydrothermal systems (e.g., groundwater) and 

the meteorological conditions may alter them to 

significant extents (Shimoike and Notsu, 2000; Lee 

et al., 2018). More importantly, precursory signals 

of eruptions may be not readily discerned from 

background fluctuations. For example, Giammanco 

et al. (2013) found that elevated CO2 fluxes prior 

to the eruptions of Etna volcano (an active stra-

tovolcano on the east coast of Sicily in Italy) were 

only within the range encountered during the qui-

escent period. Also, significant temporal varia-

tions in volcanic gas compositions were detected 

during quiescent periods (Shimoike and Notsu, 

2000; Zimmer and Erzinger, 2003; Shinohara, 2005). 

Furthermore, remote measurements of volcanic 

gases are inevitably affected by the atmospheric 

conditions, making the collected data likely mingled 

with metrological components. For example, at 

Izu-Oshima volcano (a volcanic island in the Izu 

archipelago in the Philippine Sea), volcanic CO2 

concentration was negatively correlated with the 

atmospheric pressure, and volcanic O2 concen-

tration was positively correlated with it (Shimoike 

and Notsu, 2000). Therefore, when interpreting 

volcanic gas data, it is necessary to separate vol-

canological signatures from non-volcanological 

noises for the better assessment of eruptive events. 

To this end, a series of statistical approaches were 

proposed here, which included data modification, 

parameter selection, and time series analysis. With 

the proposed approaches, it is possible to extract 

random, periodic, and trend components from vol-

canic gas data in order to interpret them in a sys-

tematic way.

2. MATERIALS AND METHODS

Monitoring of volcanic gases at active volcanoes 

has been mostly conducted using discontinuous 

techniques with relatively long intervals (e.g., weeks 

to months), or it has been limited to single gas 

parameters (Benhamou et al., 1988; Connor et al., 

1993; Cigolini et al., 2001). As a result, only a few 

of previous works related to volcanic gas chem-

istry have produced multiple sets of continuous 

data with relatively short intervals (e.g., hours to 

days), which are suitable for statistical analyses. 

Through extensive research, the volcanic gas da-

ta from Stromboli volcano (Aiuppa et al., 2010) 

and Merapi volcano (Zimmer and Erzinger, 2003) 

were subjected to the proposed statistical approaches 

(see Figs. 1a and 1b for the original data).

Stromboli volcano, an active basaltic volcano in 

Italy, is characterized by the mild and uninterrupted 

Strombolian activity (Rosi et al., 2000). Collected 

with a remote sensing MultiGAS (multicomponent 
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Fig. 1. Volcanic H2O, CO2, and SO2 concentrations at Stromboli volcano (Aiuppa et al., 2010) (a), volcanic H2O, 
CO2, and temperature at Merapi volcano (Zimmer and Erzinger, 2003) (b), evenly spaced and standardized time 
series of part (a) (c), and evenly spaced and standardized time series of part (b) (d).

gas analyzer system), the data from this volcano 

is composed of volcanic H2O, CO2, and SO2 con-

centrations over the period of July to December 

2008 at the monitoring interval of several days 

(Aiuppa et al., 2010). Significant variations in the 

gas compositions at this volcano were attributed to 

the dynamic nature of magmatic degassing (Aiuppa 

et al., 2010). Merapi volcano, an andesitic volca-

no, is located on the Java Arc, where the Indo- 

Australian Plate is subducted beneath the Java 

Trench (Widiyantoro and van der Hilst, 1996). The 

data set from this volcano consist of gas temper-

ature as well as volcanic H2O and CO2 concen-

trations over several weeks at the interval of ~35 

min (Zimmer and Erzinger, 2003). These data were 

collected in a real-time mode using a thermocouple 

and a gas chromatography that were directly con-

nected to a fumarole (Zimmer and Erzinger, 2003). 

Significant variations in the composition and tem-

perature of volcanic gases at this volcano resulted 

from regular degassing and meteorological vari-

ability (Zimmer and Erzinger, 2003).

Volcanic gas data are often unevenly spaced time 

series in which the interval between observations 

is not the same. A common way to deal with un-

evenly spaced time series is to transform them into 

evenly spaced time series using interpolation meth-

ods, among which linear interpolation is commonly 

used. As such, linear interpolation was employed 

here to convert unevenly spaced data into even-

ly spaced ones:

(1)

where pi-1, pi, and pi+1 are the measured proper-

ties at time ti-1, ti, and ti+1, respectively. Note that 

the transformation of time series data using in-

terpolation methods may introduce significant 

biases and errors in some cases (Rehfeld et al., 2011). 
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Set #1 Factor 1 Factor 2 Factor 3 Set #2 Factor 1 Factor 2 Factor 3
Standardized H2O 0.623 0.263 -0.737 Standardized H2O 0.659 0.256 -0.707
Standardized CO2 -0.602 -0.441 -0.666 Standardized CO2 -0.659 -0.256 -0.707
Standardized SO2 -0.500 0.858 -0.117 Standardized Temp. -0.361 0.932 0.000

Proportion 0.83 0.17 0.00 Proportion 0.73 0.27 0.00
Cumulative prop. 0.83 1.00 1.00 Cumulative prop. 0.73 1.00 1.00

Note: Data sets #1 and #2 are from Figs. 1c and 1d, respectively.

Table 1. Results of factor analysis.

Thus, if significant irregularity in time spacing is 

present or considerable amounts of data are miss-

ing, it is better to use the statistical methods spe-

cifically designated for unevenly spaced time series. 

Once the interpolation is complete, the resultant 

evenly spaced data can be processed using stat-

istical tools intended for evenly spaced time series.

In general, a greater emphasis is placed on a 

time series having a higher variance (i.e., large 

temporal fluctuations) than that having a lower 

variance. Accordingly, each time series in Figs. 

1a and 1b was standardized using its mean and 

standard deviation before the subsequent analyses. 

Furthermore, when dealing with the data in dif-

ferent units (e.g., H2O and CO2 concentrations ver-

sus gas temperature in Fig. 1b), it is mandatory 

to make standardization of them. In this study, 

the evenly spaced and standardized time series 

in Figs. 1c and 1d were processed using statistical 

analyses including factor analysis, correlation anal-

ysis, cross correlation analysis, and time series 

analysis. Some of these analyses were carried out 

using Microsoft Excel 2016 with the XLSTAT package. 

The other analyses including time series analysis 

were conducted using the Classical Decomposition 

with Moving Averages (CDMA) analysis, avail-

able at a website free of charge (Wessa, 2017).

3. RESULTS AND DISCUSSION

3.1 Parameter selection

First of all, factor analysis was employed to 

determine the number of factors (i.e., processes) 

required to explain the variance among a multi-

ple of time series (Lawrence and Upchurch, 1982). 

Note that a factor does not necessarily correspond 

to a specific process, and rather that it may rep-

resent a combination of several processes. In case 

that multiple volcanic gas parameters (e.g., con-

centrations of CO2, H2O, SO2, H2S, etc.) are avail-

able, it is possible to reduce a large set of data in-

to a smaller one based on factor analysis.

Table 1 presents the results of factor analysis 

for the data in Figs. 1c and 1d. As indicated by 

the cumulative proportions, Factors 1 and 2 in 

both data sets can explain nearly all of the var-

iance among the volcanic gas parameters, with 

the minimal proportion of Factor 3. Accordingly, 

only two series are worthy for the subsequent 

analyses. In both sets, H2O concentrations have 

positive loadings of Factors 1 and 2, whereas 

CO2 concentrations have negative loadings of 

Factors 1 and 2. These suggest the opposite trend 

between H2O and CO2 concentrations. Indeed, 

the time series of H2O concentrations are neg-

atively correlated with those of CO2 concentrations 

(see Figs. 2a and 2b). In case of Merapi volcano, 

the time series of CO2 concentrations is just a 

mirror image of that of H2O concentrations giv-

en that the slope of the corresponding regression 

line is -1.000 with R = -1.000 (R
2
 = 1.000) in Fig. 2b.

As mentioned above, two time series need to 

be selected in the present examples. Then, which 

ones are to be selected? Before answering this 

question, one should perform cross correlation 

analysis, which measures the similarity between 
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Fig. 2. Correlation analysis between H2O and CO2 concentrations at Stromboli volcano (Aiuppa et al., 2010) (a) 
and at Merapi volcano (Zimmer and Erzinger, 2003) (b), and cross correlation analysis of volcanic gas data at 
Stromboli volcano (Aiuppa et al., 2010) (c) and at Merapi volcano (Zimmer and Erzinger, 2003) (d).

two series as a function of lag (τ), the temporal 

displacement between them (Larocque et al., 1998). 

This analytical tool is available at a website free of 

charge (Wessa, 2017). By cross correlation analy-

sis, it is possible to evaluate whether there is a 

stimulus-response relationship between two time 

series. Figs. 2c and 2d show the results of cross 

correlation analysis between volcanic gas data in 

Figs. 1c and 1d. In Figs. 2c and 2d, the highest or 

lowest values of cross correlation functions (CCF) 

occur at τ = 0, indicating that there is no stim-

ulus-response relationship among the time series 

under consideration. Nonetheless, such relation-

ships may be present in the data obtained by re-

mote sensing techniques since the compositions 

of volcanic gas plumes are inevitably affected by 

atmospheric temperature and pressure, wind 

speed and direction, and precipitation (refer to section 

3.3 in Lee et al. (2018)). For example, Shimoike and 

Notsu (2000) have found that volcanic O2 concen-

tration is positively correlated with the atmos-

pheric pressure with several hour displacement. 

In their case, if the O2 concentration profile is shift-

ed to several hours earlier along the time axis, 

the resultant profile will match that of the atmos-

pheric pressure. Thus, it should be noted that one 

cannot select any time series having stimulus-re-

sponse relationships.

When choosing the parameters, a priority should 

be given to those that are predominantly loaded 

by single factors. As can be seen in Table 1, no 

parameters meet this criterion. Then, CO2 and H2S 

concentrations are usually good choices since both 

species are least affected by the groundwater scrub-

bing (Symonds et al., 2001). Given the dilution of 

volcanic gases by water vaporization and boiling 

during their ascents (Lee et al., 2018), it is often 

necessary to normalize these concentrations with 
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Fig. 3. Correlation analysis between CO2/H2O and SO2/CO2 at Stromboli volcano (Aiuppa et al., 2010) (a) and be-
tween CO2/H2O and temperature at Merapi volcano (Zimmer and Erzinger, 2003) (b).

respect to volcanic H2O concentration. In the present 

examples, thus, the concentration ratios of CO2/H2O 

are selected. Importantly, this selection can pre-

vent the strongly inter-correlated parameters (H2O 

and CO2 concentrations) from being considered 

together for the subsequent analyses.

In the present examples, one still needs to se-

lect one more parameter from both data sets. The 

concentration ratios of CO2/SO2, CO2/HCl, CO2/HF, 

SO2/HCl, and SO2/HF have been often used to 

predict volcanic eruptions (Duffell et al., 2003; 

Aiuppa, 2009; Notsu and Mori, 2010; Stremme et 

al., 2011; López et al., 2013). Notably, individual 

gas concentrations may fluctuate significantly in 

response to non-volcanological effects such as hy-

drothermal interactions and meteorological con-

ditions (Shimoike and Notsu, 2000; Symonds et 

al., 2001). Thus, to lessen non-volcanological ef-

fects, it is good to use the concentration ratios with 

the expectation that such effects have an influ-

ence on individual gas concentrations in a similar 

way. More importantly, the ratios are more like-

ly to reach either maxima or minima prior to vol-

canic eruptions than individual gas concentrations 

(refer to section 4.3 in Lee et al. (2018)). For the 

data set of Aiuppa et al. (2010), the CO2/SO2 ratio 

is the only remaining one on the aforementioned 

list. If more than one ratio is available, one may 

consider the ratio wherein two gas concentrations 

are characterized by the same highest loading fac-

tor but by different secondary factors, and then 

move to the one wherein two gas concentrations 

have different highest loading factors but the same 

secondary factor. In case of Zimmer and Erzinger 

(2003), volcanic gas temperature is to be chosen 

since no more concentration ratio is available af-

ter selecting CO2/H2O ratios.

Once all parameters are selected, one should make 

sure that they are not correlated with each other. 

As shown in Fig. 3a, the ratios of CO2/H2O and 

SO2/CO2 are not strongly correlated (R = -0.420). 

Also, in Fig. 3b, the ratios of CO2/H2O are not 

strongly correlated with volcanic gas temperature 

(R = 0.321). These results assure the validity of the 

selected parameters for the subsequent analyses. 

If selected parameters are correlated significantly, 

one should try other parameters and repeat cor-

relation analysis until no strong correlation ex-

ists among them.

3.2 Time series analysis

Time series of selected parameters can be proc-

essed using a multiple of statistical tools, each of 

which has its own pros and cons. In this study, 

the selected time series were subjected to the Classical 

Decomposition with Moving Averages (CDMA) anal-
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Fig. 4. Time series analysis of CO2/H2O ratios (a) and SO2/CO2 ratios (b) by Classical Decomposition with Moving 
Averages (CDMA) analysis at the period (n) of 12, and the corresponding periodograms of CO2/H2O ratios (c) and 
SO2/CO2 ratios (d) by spectral analysis. The original data were collected at Stromboli volcano (Aiuppa et al., 2010).

Fig. 5. Time series analysis of CO2/H2O ratios (a) and temperature (b) by Classical Decomposition with Moving 
Averages (CDMA) analysis at the period (n) of 12, and the corresponding periodograms of CO2/H2O ratios (c) and 
temperature (d) by spectral analysis. The original data were collected at Merapi volcano (Zimmer and Erzinger, 2003).

ysis (Wessa, 2017). This statistical tool can pro-

vide a convenient and effective way to extract 

trend, periodic, and random components from 

time series (see Figs. 4 and 5). In volcanic gas 

analysis, the trend component reflects the depth 

(pressure) of magmatic degassing and the extent 
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Fig. 6. Effect of the period (n) on the apportionment 
among the trend, periodic, and random components in 
the time series of CO2/H2O ratios by the CDMA 
analysis. The original data were collected at Stromboli 
volcano (Aiuppa et al., 2010).

of hydrothermal interactions, the key processes 

controlling the evolution of volcanic gas composi-

tions (Lee et al., 2018). Note that the trend compo-

nent may be long-term or short-term depending 

on the monitoring duration. For example, while 

Figs. 4a and 4b show several month long trends, 

Figs. 5a and 5b indicate the trends over several 

days. The periodic component likely represents 

regular rises of gas bubbles from magmas as 

well as diurnal and season variations in metro-

logical conditions. The random component may 

result from explosive gas discharges, gas influ-

xes from other magma sources, vent collapses 

due to seismic activities, and abrupt changes in 

metrological conditions.

In the CDMA analysis, one is first asked to se-

lect the period (n), the size of subset data to be 

averaged. In Fig. 6, it is illustrated how the period 

affects the apportionment among the three components. 

With the increasing period, the trend component 

becomes smoother, with the greater proportion of 

the other components (see Fig. 6). When choos-

ing the period in the CDMA analysis, one should 

take into account the monitoring length and interval. 

For example, if monthly measurements are made 

over a few years, the seasonal periodicity (n = 12) 

need to be reflected. On the other hand, when the 

collected data are several days long with hourly 

intervals, the diurnal periodicity (n = 24) should 

be considered. Also, it is better to choose a larger 

period in analyzing a bigger size of data.

Once the trend component is separated from 

the other components, it is necessary to evaluate 

whether it is significant compared to the season-

al and random components. In Figs. 4a and 4b, 

the ranges (i.e., spreads) of the trend components 

are greater than those of the other components. 

Thus, one may claim that the ratios of volcanic 

CO2/H2O and SO2/CO2 at Stromboli volcano were 

roughly on the upward and downward, respectively. 

In contrast, the trend components in Figs. 5a and 5b 

are largely within the ranges of the other components. 

Thus, despite the significant temporal variations 

in both CO2/H2O ratios and temperature, no defi-

nite trend was noted at Merapi volcano.

Despite the preceding discussion, it is not cer-

tain which feature(s) in the trend components can 

herald volcanic eruptions. Although this issue may 

not be resolved completely, it is still possible to 

glean an important clue. In general, abrupt changes 

in volcanic gas compositions precede eruptions 

(Lee et al., 2018), suggesting that the rates of changes 

in volcanic gas compositions are of potential im-

portance in predicting eruptions. In this study, the 

rates of changes in CO2/H2O and SO2/CO2 ra-

tios at Stromboli volcano were calculated for the 
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Fig. 7. Rates of changes in the trend components of 
CO2/H2O ratios (a) and SO2/CO2 ratios (b). The data 
sources of parts (a) and (b) are Figs. 4a and 4b, 
respectively. Dashed lines in red, orange, and blue rep-
resent 95th percentiles, 75th percentiles, and means, 
respectively.

trend components as follows:

(2)

where Ri and Ri+1 are the concentration ratios 

of CO2/H2O or SO2/CO2 at time ti. and ti+1, 

respectively. In Fig. 7, the calculated rates are com-

pared to their 75th and 95th percentiles as well as 

the means. If the rates lie successively beyond a limit 

(e.g., 95th percentile), such features may be con-

sidered a sign of eruptions. In Fig. 7, it should be 

noted that the data located outside a cautionary 

limit (e.g., 95th percentile) do not necessarily fore-

tell imminent eruptions since only a small amount 

of data are incorporated in these calculations. Thus, 

volcanic gas data monitored over a longer period 

are required for the better prediction of eruptions. 

Also, it is beneficial to have the data encompassing 

previous eruption events in order to determine 

to what extents the rates of changes in volcanic gas 

compositions may occur close to eruptions.

In addition to CDMA analysis, time series can 

be processed and evaluated using spectral analysis, 

by which the data in a time domain are Fourier- 

transformed into those in a frequency domain 

(Spongberg, 2000). This statistical tool is also avail-

able at a website free of charge (Wessa, 2017). 

The resultant diagram obtained by this analysis 

is called a periodogram, in which the signals at 

low frequencies correspond to long-term changes 

whereas those at high frequencies reflect short-lived 

fluctuations. In Figs. 4c-4d and 5c-5d, three com-

ponents as well as the standardized data are sub-

jected to spectral analysis. It is obvious that the 

signals at low frequencies match the trend com-

ponents and those at intermediate to high frequen-

cies match the periodic and/or random components. 

In Figs. 4c-4d and 5c-5d, the signals at low fre-

quencies are far stronger than those at high fre-

quencies, indicating the dominance of the trend 

components. Also, the periodic components are 

shown to be weaker compared to the other components. 

Yet, the situations may arise that the signals at 

high frequencies are as strong as or stronger 

than those at low frequencies. Even in such cas-

es, it is possible to selectively extract the trend 

components by back-transforming the signals at 

low frequencies in a periodogram. Although not 

further discussed, such back-transformation is com-

monly exercised to filter out noises (i.e., high fre-

quency signals) from time series (Spongberg, 2000).

4. CONCLUSIONS

Volcanic gas compositions are affected by multi-

ple factors including magmatic processes, hydro-

thermal interactions, and meteorological conditions 

(Shimoike and Notsu, 2000; Symonds et al., 2001). 

Due to the site specificity and temporal variability 
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of these factors, it is often challenging to make 

generalizations about volcanic gas chemistry to 

predict volcanic eruptions. Thus, there is a strong 

need to develop a systematic way to analyze vol-

canic gas data. In this study, a series of statistical 

approaches were proposed to interpret volcanic 

gas data in a simple but robust way. Also, exam-

ple cases were brought up to aid implement the 

proposed approaches. Using such approaches, it 

is possible to separate volcanological signals from 

non-volcanological backgrounds in volcanic gas 

data. Thus, one may have a better view of mag-

matic processes to forecast volcanic eruptions and 

assess the hazard and risk associated with them.
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